Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
نویسندگان
چکیده
We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term.
منابع مشابه
University of Cambridge Numerical Analysis Reports Improved High Order Integrators Based on Magnus Expansion Improved High Order Integrators Based on Magnus Expansion
We build high order eecient numerical integration methods for solving the linear diierential equation _ X = A(t)X based on Magnus expansion. These methods preserve qualitative geometric properties of the exact solution and involve the use of single integrals and fewer commutators than previously published schemes. Sixth-and eighth-order numerical algorithms with automatic step size control are ...
متن کاملStructure preserving integrators for solving (non-)linear quadratic optimal control problems with applications to describe the flight of a quadrotor
We present structure preserving integrators for solving linear quadratic optimal control problems. This problem requires the numerical integration of matrix Riccati differential equations whose exact solution is a symmetric positive definite time-dependent matrix which controls the stability of the equation for the state. This property is not preserved, in general, by the numerical methods. We ...
متن کاملExponential integrators for coupled self-adjoint non-autonomous partial differential systems
We consider the numerical integration of coupled self-adjoint non-autonomous partial differential systems. Under convergence conditions, the solution can be written as a series expansion where each of its terms correspond to solutions of linear time dependent matrix differential equations with oscillatory solutions that must be solved numerically. In this work, we analyze second order of Magnus...
متن کاملHigh-order commutator-free Magnus integrators and related methods for non-autonomous linear evolution equations
The class of commutator-free Magnus integrators is known to provide a favourable alternative to standard Magnus integrators, in particular for large-scale applications arising in the time integration of non-autonomous linear evolution equations. A high-order commutator-free Magnus integrator is given by a composition of several exponentials that comprise certain linear combinations of the value...
متن کاملMagnus integrators for solving linear-quadratic differential games
We consider Magnus integrators to solve linear-quadratic N-player differential games. These problems require to solve, backward in time, non-autonomous matrix Riccati differential equations which are coupled with the linear differential equations for the dynamic state of the game, to be integrated forward in time. We analyze different Magnus integratorswhich can provide either analytical or num...
متن کامل